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Abstract The present paper investigates the force-

extension behavior of a stiff polymer under stretching

inside a small tube. We develop a theory and perform

Brownian dynamic simulations based on a recently devel-

oped generalized bead-rod model (GBR) to show that the

force-extension relation of such a strongly confined poly-

mer chain can be described by that of an unconfined

polymer subject to an effective force which is derived

based on Odijk’s theory of a confined polymer chain.

Introduction

Physical properties of macromolecules and polymers in

complex environments are usually influenced by external

conditions such as geometrical confinements and applied

forces [1, 2]. Polymers in geometrical confinements that

are smaller than their unconfined molecular sizes are of

great significance in fields from polymeric liquid crystals

[3] to biological structures such as nucleosomes [4] and

viruses [5, 6]. In concentrated polymeric solutions and

melts, a single polymer can be subjected to large resis-

tances to motion from surrounding chains perpendicular to

its contour while moving along its contour with relative

ease. This situation is similar to a polymer confined in a

tube-like region [2]. Early discussions on the behaviors of a

single polymer chain confined in a tube can be found in de

Gennes’ work [1, 7–9], where simple scaling laws for the

confinement free energy and the longitudinal extension

were proposed as functions of the confinement cross-sec-

tion. This line of work was significantly elaborated for

polymer models such as the Gaussian and wormlike chains

[2]. For a stiff polymer chain1 tightly2 confined inside a

tube or nematic liquid, an interesting scaling law for the

confinement free energy of the chain was derived by Odijk

et al. [10–16], with results later confirmed by numerical

simulations [17–19].

Over the last decade, direct experimental investigations

have become possible for static and dynamic properties of

single polymer molecules subject to external forces, such

as the measurement of force-extension relation of DNAs in

electrolytes [20–22]. Bustamante et al. [21] have shown

that the force-extension curve of a 97004 bps DNA mol-

ecule in 10 mM Na+ can be described by a wormlike chain

model provided that the contour length L and persistence

length p are treated as adjustable parameters to fit experi-

mental data. Marko and Siggia [23] interpolated a formula

for the extension of polymers which can almost exactly fit

the force-extension curve of a long DNA chain. For short

polymer chains, Kierfeld et al. [24] developed a discrete

harmonic chain model which has been numerically verified

[19] and shown to be valid even for a charged short chain if

an effective persistent length is introduced [25].
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1 In an unconfined solution, a stiff polymer usually means that its

contour length L is smaller than its persistence length p. On the other

hand, a polymer confined in a small tube can be regarded as stiff as

long as the persistence length p of a polymer is larger than the tube

radius R, irrespective of the ratio L/p. We do not distinguish these two

situations in the current study.
2 Here, a ‘‘tightly’’ or ‘‘strongly’’ confined polymer implies that the

typical length scale of the confinement is smaller than the polymer’s

persistence length.
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In spite of the above progresses on confined polymers,

the behavior of a stiff polymer chain under stretching

inside a small tube has not been fully investigated. In this

paper, we develop a theory and perform Brownian

dynamics simulations based on a recently developed

generalized bead-rod model (GBR) [19, 25] to show that

the force-extension relation of a strongly confined poly-

mer can be described by that of an unconfined polymer

subject to an effective tensile force which can be

analytically derived from Odijk’s theory on confined

polymers.

Theory

Figure 1 shows the model system of a continuous wormlike

chain confined inside a cylindrical tube with radius R. A set

of Cartesian coordinates (x, y, z) are placed at the center of

the tube so that the z-axis is along the tube axis. The chain

is stretched by a tensile force f ¼ f k where k is the unit

vector along the z-axis. The position vector along the arc

length s of the chain is

r ¼ r?ðsÞ þ zðsÞk ð1Þ

where r? ¼ ðx; yÞ is perpendicular to the z-axis, and

rð0Þ ¼ 0: The derivatives

u? ¼
or?
os

; ujj ¼
dz

ds
k ð2Þ

define the tangential vector. In the case of strong

confinement, the undulation of the chain due to thermal

fluctuation will be small so that u?k k\\1: The

inextensibility condition of the wormlike chain

uk k ¼ or=osk k ¼ 1 and Eq. 2 lead to

dz

ds
¼ 1� 1

2
u2
? þ Oðu4

?Þ: ð3Þ

Therefore, we have

o2r

os2
¼ o2r?

os2
þ d2z

ds2
k ¼

o u? þ Oðu2
?Þk

� �

os
� ou?

os
: ð4Þ

The Hamiltonian of the confined wormlike chain under

stretching can be expressed as the summation of bending

and potential energies due to stretching and tube-confine-

ment as [3, 23]

H ¼ 1

2
pkBT

Z L

0

o2r

os2

� �2

ds� f � ½rðLÞ

� rð0Þ� þ
Z L

0

Vðr?Þds ð5Þ

in which p is the persistence length of the confined chain

and

Vðr?Þ ¼
0; r?k k\R
1; otherwise

�
ð6Þ

is the confinement potential per unit length due to the

tube-wall [26, 27]. It has not been successful to obtain

analytical solutions to Eq. 5 under the hard wall boundary

condition of Eq. 6 [26–28]. However, solutions can often

be obtained for a wormlike chain confined in a harmonic

potential [26, 27]

Vðr?Þ ¼
1

2
Nr2
?: ð7Þ

Burkhard [26] has shown that the confinement free energy

of a polymer with respect to the harmonic potential in

Eq. 7 has the same general form as that based on Eq. 6,

with difference only in a dimensionless prefactor which

depends on the particular potential. Following this

approach, we will establish the basic form of the solution

based on the harmonic potential in Eq. 7 and then deter-

mine a prefactor based on Odijk’s theory of a confined

polymer chain.

In Eq. 5, the potential energy with respect to the

external force can be rewritten as

f � ½rðLÞ � rð0Þ� ¼ fz ¼ fL� f

2

Z L

0

u2
?ds ð8Þ

where we have used Eq. 3 and z(0) = 0. Inserting Eqs. 4, 7

and 8 into Eq. 5 yields

H � 1

2
pkBT

Z L

0

ou?
os

� �2

ds

þ f

2

Z L

0

u2
?dsþ N

2

Z L

0

Z s

0

u?ðnÞdn

� �2

ds ð9Þ

where we have dropped a constant term and used relation

r?ðsÞ ¼
Z s

0

u?ðnÞdn: ð10Þ

Following earlier studies [3, 23, 29], we introduce

Fourier transform

)(su)(sr
sO

f f
z

R2

Fig. 1 Coordinate system of a wormlike chain under stretching

inside a confining tube
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~u?ðxÞ ¼
Z

e�ixsu?ðsÞds ð11Þ

to decouple Eq. 9 into normal modes as

H

kBT
¼ 1

4p

Z 1

�1
px2 þ f

kBT
þ N

kBT

1

x2

� �
~u2
?dx ð12Þ

with average energy contributed by each mode

\Hx >

kBT
¼ 1

2
px2 þ f

kBT
þ N

kBT

1

x2

� �
\~u2

? > : ð13Þ

According to the equipartition theorem, <Hx> is equal to

kBT for two degrees of freedom, and Eq. 13 becomes

\~u2
? > ¼ 2

px2 þ f
kBT þ N

kBT
1
x2

: ð14Þ

It follows that

1

L

Z L

0

\u2
? > ds

¼ 1

2p

Z 1

�1

2

px2 þ f
kBT þ N

kBT
1
x2

dx

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fp=kBT þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np3=kBT

pq ð15Þ

In the case of f = 0, we use the following result from

Odijk’s theory on confined polymers [3, 10, 11],

\u2
? > ¼ k

cp
ð16Þ

where k is the Odijk deflection length and c is a

numerically determined prefactor around 2.5 [17–19]. For

a confining tube of radius R, Odijk [10] has shown that

k ¼ ð4R2pÞ1=3: ð17Þ

Comparing Eqs. 15 and 16 gives

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np3=kBT

pq ¼ k
cp

ð18Þ

or

N ¼ c4p

4k4
kBT : ð19Þ

Noting that

zðLÞ ¼ L� 1

2

Z L

0

u2
?ds; ð20Þ

Eqs. 15, 19 and 20 give

1�\z > ¼ 1

2

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fep=kBT

p ð21Þ

where <z> is denoted as the average end-to-end distance of

the wormlike chain along z-axis normalized by the contour

length L, and

fe ¼ f þ c2p

k2
kBT ð22Þ

which can also be written in the form

fep

kBT
¼ fp

kBT
þ c2 p

2R

	 
4=3

:

Eq. 22 suggests that the behavior of a strongly confined

polymer under stretching can be described by that of an

unconfined polymer subject to the effective force equal to

fe. In other words, the tube confinement can be viewed as

an effective stretching force. As a consequence, the force-

extension relation of a long wormlike chain confined in a

tube can be obtained as

fep

kBT
¼\z > þ 1

4ð1�\z > Þ2
� 1

4
; ð23Þ

following Marko and Siggia [23]. It can be seen from

Eq. 23 that the normalized extension of the polymer chain

under combined actions of mechanical stretching and

geometrical confinement only depends on the normalized

tensile force and the ratio p/R, with no dependence on the

contour length of the chain (L>>p). In contrast, the force-

extension relation of a discrete wormlike chain of finite

contour length L is [24]

fep

kBT
¼ 1

2B
1þ B

ð1�\z > Þ2

 !1=2

� 1

2B
1þ Bð Þ1=2þ p

L

1

1�\z >
� 1

� �

þ � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ B
p � p

L
þ 3

2

1

Uðp=LÞ

� �
\z > ð24Þ

where UðxÞ ¼ 1� xþ xe�1=x; B ¼ ðb=2pÞ2; and b is the

length of a unit bond in the discrete chain. For the discrete

chain, Eq. 24 shows that the normalized extension <z>

under stretch and tube-confinement is determined by the
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normalized tensile force, as well as p/R, p/L and b/p. Only

when L>>p and b<<p Eq. 24 can be reduced to Eq. 23.

Brownian dynamics simulations

Here we briefly describe Brownian dynamics simulations

that were performed to verify the simple force-extension

relations proposed in the previous section. The simulations

were based on the GBR model of a wormlike chain under

strong confinements [19].

In the GBR model, a semiflexible polymer or filament is

described as N identical virtual beads of radius a connected

by N–1 inextensible rods of length b with the unit

tangential vectors uj (jujj ¼ 1, j ¼ 1; 2; . . . ;N � 1). The

contour length of the chain is L = (N–1)b. The N virtual

beads with coordinates rj ¼ ðxj; yj; zjÞ (j ¼ 1; 2; . . . ;N) are

introduced for modeling hydrodynamic interactions

between different chain segments. The Brownian dynamics

of a discrete wormlike chain involves the collective motion

of N identical beads in solution. After the hard rod con-

straint is implemented via the linear constraint solver

(LINCS) [30], the new position vector rðnþ1Þ of the N beads

is determined from

rðnþ1Þ ¼ ðI� TðnÞBðnÞÞðrðnÞ

þ Dt

kBT
DðnÞFðnÞ þ nðnÞÞ þ TðnÞd ð25Þ

where rðnÞ (3N vector) is the current position of the beads,

FðnÞ is the collective vector of internal (inter-beads) and

external forces, nðnÞ is the random force generated at each

time step from a Gaussian distribution with zero mean and

variance equal to

\nðnÞnðn0Þ > ¼ 2DðnÞDtdnn0: ð26Þ

Here, Dt is the time step and dnn0 is the Kronecker delta

symbol, I� TðnÞBðnÞ is a projection matrix which sets the

constraints and DðnÞ is the translational diffusion matrix

determined through hydrodynamic interactions between

beads.

Special considerations are needed for numerical simu-

lations of spatially confined wormlike chains. Peters et al.

[31] introduced an efficient algorithm for the Brownian

dynamics of a particle near reflecting wall. In their method,

the errors of discretization are kept on the order of O(Dt) to

handle the boundary conditions, while a naive treatment of

identifying reflection processes by checking boundary

crossings usually yields errors on the order of Oð
ffiffiffiffiffi
Dt
p
Þ [31].

Their approach has been adapted to polymer confinements

in the GBR model [19]. For the collective motion of many

beads in the bead-rod wormlike chain, we take the jth bead

with current position rðnÞj under cylindrical confinement to

illustrate the algorithm. If the bead is located close enough

to the reflecting wall, e.g.,

SðnÞj � R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
ðnÞj þ y2

ðnÞj

q

�
ffiffiffiffiffiffiffiffiffiffiffi
5DDt
p ð27Þ

the stochastic movement caused by the reflecting wall is

given by

dxwall
ðnÞj ¼ �

xðnÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
ðnÞj þ y2

ðnÞj

q

� f1

SðnÞjffiffiffiffiffiffiffiffiffi
DDt
p
� � ffiffiffiffiffiffiffiffiffi

DDt
p

þ f2ð
SðnÞjffiffiffiffiffiffiffiffiffi
DDt
p Þ

ffiffiffiffi
D
p

DU

� �
ð28Þ

dywall
ðnÞj ¼ �

yðnÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
ðnÞj þ y2

ðnÞj

q

f1

SðnÞjffiffiffiffiffiffiffiffiffi
DDt
p
� � ffiffiffiffiffiffiffiffiffi

DDt
p

þ f2

SðnÞjffiffiffiffiffiffiffiffiffi
DDt
p
� � ffiffiffiffi

D
p

DU

� � ð29Þ

dzwall
ðnÞj ¼ 0 ð30Þ

where j ¼ 1; 2; . . . ;N, SðnÞj is the current relative radial

position of the jth bead and functions f1, f2 are defined in

[19]. The value
ffiffiffiffiffiffiffiffiffiffiffi
5DDt
p

used above was suggested by

Peters et al. [31] in their treatment of a sticky wall. In the

present case, the wall of the confining tube is assumed to

influence the motion of a bead only if the distance between

the bead and the wall is smaller than this value. We

therefore set dxwall
ðnÞj ¼ dywall

ðnÞj ¼ dzwall
ðnÞj ¼ 0 if the current

distance between the jth bead and the wall exceedsffiffiffiffiffiffiffiffiffiffiffi
5DDt
p

, i.e., SðnÞj >
ffiffiffiffiffiffiffiffiffiffiffi
5DDt
p

. For convenience, we can

express the above stochastic displacements given by

Eqs. 28–30 as a 3N vector v, which consists of

vwall
ðnÞj ¼ ðdxwall

ðnÞj ; dywall
ðnÞj ; dzwall

ðnÞj Þ, j ¼ 1; 2; . . . ;N. Including v

in the current position vector rðnÞ in Eq. 25, we obtain

rðnþ1Þ ¼ ðI� TðnÞBðnÞÞðrðnÞ þ vwall
ðnÞ

þ Dt

kBT
DðnÞFðnÞ þ nÞ þ TðnÞd ð31Þ

Results and discussions

For a confined wormlike chain subjected to a constant

tensile force f in the z-direction on both ends of the chain,

the force vector FðnÞ in Eq. 31 can be written as

FðnÞ ¼ Fb
ðnÞ þ Ft ð32Þ

where Ft is the tensile force and Fb
ðnÞ is the effective force

on the beads due to the bending rigidity of the chain.
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Based on the GBR model, Brownian dynamics simula-

tions have been performed for wormlike chains in

nanotubes of different radius. In all simulations, the chains

are initially set in a straight configuration. Tube confine-

ments and constant tensile forces are then applied during

the chains’ relaxation. We record the normalized end-to-

end distance <z> of a chain along z-axis at each time

increment. Figure 2 compares the simulation results with

corresponding theoretical predictions based on the effec-

tive force concept in Eq. 22. The chains were simulated for

a total time of 10 ls with parameters b/p � 0.19,

a ¼ 1:3 nm, T = 293 K, Dt ¼ 300 ps (in cases of

fp=kBT\100) or Dt ¼ 30 ps (in cases of fp=kBT > 100).

Each data point in Fig. 2 is obtained by averaging the

recorded values of <z> for 200 trajectories with different

random seeds. The abbreviation ‘‘DWLC’’ stands for the

discrete wormlike chain model in Eq. 24, and ‘‘CWLC’’

stands for the continuous wormlike chain model in Eq. 23.

The simulations were conducted for chains within different

tubes under parameters p/R � 5.3, p=R � 10:6 and

R = 5 nm, 10 nm, 20 nm. It can be seen from Fig. 2 that

the simulation results are in good agreement with those

predicted by the discrete wormlike chain model when the

effective force expression is applied. Figure 3 illustrates

the dynamic evolution, averaged over 200 different tra-

jectories, of the relative extension of wormlike chains

confined in nanotubes of different radius over a total sim-

ulation time of 10 ls under parameters b/p = 0.19,

Dt ¼ 300 ps, a = 1.3nm and T = 293 K. The effective

force is fixed at fep=kBT ¼ 31 for each trajectory, which

can be realized by setting p=R � 5:3 and fp=kBT ¼ 8, or by

setting fp=kBT ¼ 31 for an unconfined chain, or by con-

fining a free chain in a tube. The results indicate that

equilibrium is reached within a few microseconds. It can be

observed from Fig. 3 that, under the same normalized

effective force fep=kBT ¼ 31, the crossover times between

ballistic (� t) and diffusive (� t1=2) behaviors are different

for tubes with different radii. These results confirm that the

force-extension behavior of a wormlike chain confined in a

nanotube can be well described by the discrete wormlike

chain model of Eq. 24 incorporating the concept of effec-

tive force defined in Eq. 22.

Conclusion

Theories of confined polymers suggest that the effect of

geometrical confinements on the force-extension relation

of a polymer can be represented by an effective force

applied to an unconfined polymer chain. Here we have

theoretically investigated this problem and derived an

analytical expression of this effective force for a polymer

chain confined in a cylindrical tube based on Odijk’s theory

on confined polymers. We have also performed Brownian

dynamics simulations, based on a recently developed

generalized bead-rod model, to investigate the force-

extension behavior of a wormlike chain confined in a

nanotube, with results in excellent agreement with the

discrete wormlike chain model of Kierfeld et al. [24]

incorporating the effective force concept defined in Eq. 22.
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Fig. 2 Comparisons of Brownian dynamics simulation results for the

relative extension of nanotube confined wormlike chains with

corresponding theoretical predictions based on the concept of an

effective force in Eq. 22. ‘‘CWLC’’ stands for the continuous

wormlike chain model and ‘‘DWLC’’ stands for the discrete wormlike

chain model. The theoretical predictions are shown as continuous

curves. In plotting the curves, we have taken the basic measure of

persistence length to be p0 ¼ 53:248 nm , corresponding to that of a

DNA chain
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Fig. 3 The dynamic evolution of the relative extension of a wormlike

chain under stretching by a force of different magnitudes inside

nanotubes of different radii, where the effective force is fixed as

31kBT=p and p0 ¼ 53:248 nm corresponds to the persistence length of

a DNA chain
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